On demand Workshop: Analyzing the role of ML Observability Tools: Enhancing AI Governance in Loan Underwriting

Register to attend

Thank you for your interest!

Your registration for the event is confirmed! We will send you the invite soon.

For any query please contact us on

Oops! Something went wrong while submitting the form.

Complete this form to download

Thank you for your interest!

Your Documents is ready to download. please click below to initiate the download.

If you are unable to download the document or have same query, please contact us on

Oops! Something went wrong while submitting the form.

With the help of machine learning models, underwriting in lending has created compelling applications across use cases. Several techniques are being used by businesses to develop, manage, explain, audit and manage their models.  They are streamlining operations, automating processes and making data-driven decisions.

Designing a governance framework around these Underwriting AI models is important, as:

  • Failure or errors can have a serious impact on the profitability and quality of the book
  • There are directly applicable regulations to use AI, like the AI Act (US, EU), GDPR (EU), RBI Digital Guidelines (India), etc., with extensive guidance outlining the expectations of regulators
  • Identifying and mitigating bias in underwriting has become crucial
  • Auditability is important for risk management and regulatory compliance
  • The productivity of underwriters can be improved if the models are transparent

In this workshop, we walk through a case study on how ML Observability tools can be used to design a framework for achieving a scalable and safe AI environment for the business.

You will learn: 

  • Overview of Lending Club Data and loan default prediction model
  • Overview of ML observability, applications and best practices 
  • How to use AryaXAI and design the AI Governance on Lending club data
  • Next steps and future work
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

See how AryaXAI improves
ML Observability

Learn how to bring transparency & suitability to your AI Solutions, Explore relevant use cases for your team, and Get pricing information for XAI products.